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Extremal hexagonal chains 

Ivan Gutman 

Faculty of Science, University of Kragujevac, P.O. Box 60, 
34000 Kragujevac, Yugoslavia 

Dedicated to Frank Harary, teacher, inspirer and 
friend, pioneer, champion and proprietor of graph 
theory, on the occasion of his 70th birthday. 

Some extremal properties of the linear chain Lh of h hexagons are pointed out. In 
the class of all hexagonal chains with h hexagons, L h has minimum K, Z and x 1 values, 
as well as maximum W and t:r values; K = number of perfect matchings, Z = number of 
independent edge sets (Hosoya index), x 1 = largest graph eigenvalue, W = Wiener index, 
ty= number of independent vertex sets (Merrifield-Simmons index). The extremality 
of L h with respect to Z, cr and x 1 is demonstrated here for the first time. 

1. Introduction 

Frank Harary was the first to realize that hexagonal systems (or, as he named 
them: "hexagonal animals") are very attractive objectives for graph-theoretical studies 
and the first to initiate their serious mathematical investigations [1,2]* In a seminal 
paper [3], Harary and Harborth examined extremal hexagonal (and other) systems, 
e.g. systems which for a given number of hexagons have as few as possible or as 
many as possible vertices. 

In this work, we report some results on extremal hexagonal chains. A hexagonal 
chain is a hexagonal system with the properties that (a) it has no vertex belonging 
to three hexagons, and (b) it has no hexagon with more than two adjacent hexagons. 
The ten distinct hexagonal chains with five hexagons are depicted in fig. 1. 

Hexagonal chains are extremal in the Harary-Harborth sense: they possess 
a maximum number of vertices and a maximum number of edges for a given 
number of hexagons. 

Hexagonal systems are of great importance for theoretical chemistry because 
they are the natural graph representations of benzenoid hydrocarbons [4]. A 
considerable amount of research in mathematical chemistry has been devoted to 

*The prize of "$100 in United States currency" offered by Harary [2] for the enumeration of hexagonal 
(and other) animals has not yet been collected. 

© J.C. Baltzer AG, Science Publishers 
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Fig. 1. 

hexagonal systems/benzenoid hydrocarbons [4-6]. Hexagonal chains are the graph 
representations of an important subclass of benzenoid molecules, namely of the so- 
called unbranched catacondensed benzenoids. The structure of these graphs is apparently 
the simplest among all hexagonal systems. Therefore, it is not surprising that a great 
deal of mathematical and mathematico-chemical results known in the theory of 
hexagonal systems apply, in fact, only to hexagonal chains [4-6]. In particular, the 
enumeration of hexagonal chains was accomplished by Balaban and Harary [2,7]. 

The following notation and terminology willl be used throughout this paper. 
First of all, in full harmony with Harary's original definition of a hexagonal animal 
(see, in particular, refs. [7, 8]), the hexagonal chains considered by us include both 
geometrically planar and geometrically non-planar (helicenic) species. 

The number of hexagons in a hexagonal chain C is denoted by h. All hexagonal 
chains with h hexagons have 4h + 2 vertices and 5h + 1 edges [4]. The set of all 
hexagonal chains with h hexagons will be denoted by Ch. For example, the elements 
of 6"5 are just the ten graphs depicted in fig. 1. 

The chain whose h hexagons are arranged in a linear manner is denoted by 
Lh; the respective benzenoid hydrocarbons form the linear polyacene homologous 
series (benzene, naphthalene, anthracene, naphthacene, pentacene . . . .  ). Observe 
that 6"1 = {L1} and 6"2 = {L2}. 
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Lh 

The aim of this paper is to point out a few extremal properties of the systems 
Lb. As a matter of fact, at least two such results are already known. We formulate 
them in theorems 1 and 2. 

THEOREM 1 [9,10] 

Denote by K(G) the number of perfect matchings of the graph G. Then for 
all C E Ch and for all h > 1, 

K(Lh) < K(C) 

with equality holding only if C = L h. Furthermore, g ( L h )  = h + 1. 

THEOREM 2 [11] 

Denote by W(G) the Wiener index (= sum of the distances of  all pairs of 
vertices) of the graph G. Then for all C e d'h and for all h > 1, 

W(Lh) >-- W(C) 

with equality holding only if C = L h. Furthermore, W(Lh) = ½ (16h 3 + 36h 2 + 26h + 3). 

2. The main results 

In this paper, we offer three more results on extremal properties of Lh, 
summarized in theorems 3-5 .  

THEOREM 3 

Denote by Z(G) the number of independent edge sets of the graph G (= the 
Hosoya index). Then for all C e Ch and for all h > 1, 

Z(Lh) -< z(c) 

with equality holding only if C = Lb. 

THEOREM 4 

Denote by or(G) the number of independent vertex sets of the graph G (= the 
Merr i f ie ld-Simmons index). Then for all C E Ch and for all h > 1, 
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~(Lh) > ~(C) 

with equality holding only if C = Lh. 

THEOREM 5 

Denote by x l ( G )  the  largest eigenvalue of the graph G. Then for all C ~ Ch 

and for all h > 1, 

Xl(Lh) <- Xl(C ) 

with equality holding only if C = L h. 

3. Proof of theorem 3 

Two edges of a graph G are said to be independent if they are not incident. 
Let E ( G )  be the edge set of G. Any subset of E ( G )  containing no two mutually 
incident edges is called an independent edge set. The total number of independent 
edge sets of G is denoted by Z ( G ) .  In 1971, Hosoya [12] proposed this graph- 
theoretical invariant for quantifying certain structural features of organic molecules. 
Since then, numerous studies of Z have been undertaken (see, for example, ref. [13], 
pp. 127-134); Z is nowadays commonly called "the Hosoya index". 

The Hosoya index conforms to the following two basic recurrence 
relations [12,13]: 

Z ( G )  = Z ( G  - e)  + Z ( G  - u - v ) ,  (1) 

where e denotes an edge of the graph G, connecting the vertices u and v, and 

Z ( G l  u G2) = Z ( G 1 ) Z ( G 2 ) ,  (2) 

where G1 w G2 denotes the graph composed of disconnected components G1 and 
G2. An immediate consequence of (1) is [12] 

Z ( G )  = Z ( G  - u) + Z ( G  - u - v )  + ~ Z ( G  - u - w ~ )  (3) 
i 

with the fight-hand side summation going over all vertices w~ of the graph G, which 
are adjacent to u, but which differ from the vertex v. Consequently, 

Z ( G )  - Z ( G  - u) - Z ( G  - u - v )  > 0 (4) 

with equality only if v is the unique neighbor of u. 
Any element Co of Ch can be obtained from an appropriately chosen graph 

C1 ~ Ch_ 1 by attaching to it a new hexagon: 
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× 

Y 

Co 

Using formulas (1) and (2), we easily deduce 

Z ( C o )  = 5 Z ( C I )  + 3 [ Z ( C  1 - x )  + Z ( C  1 - y)] + 2 Z ( C  1 - x - y ) .  (5) 

The relevant features of the structure of the graph CI are represented by the 
diagram below, in which C2 ~ Ch-2. 

a 

C1 

Accordingly, the construction C1---) Co can be realized in three different ways, 
denoted by a, fl and 7:. 

C1 
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Note  that in the case a ,  x - a, y -- b, in the case r ,  x -- b, y - c, whereas  in the case 
7, x -- c, y - d. A repeated annelat ion o f  mode  fl produces  a l inear system,  whereas  
the result  o f  the modes  a and 7 are angularly annelated chains. 

Appl icat ion o f  relations (1) and (2) s t raightforwardly leads to 

[ Z ( C  1 -- X) + Z ( C  1 - Y) la  

= 5 z ( c 2 )  + 2 z ( c 2  - u)  + 3 z ( c 2  - v )  + z ( c 2  - u - v ) ,  (6a) 

[ Z ( C  1 - x )  + Z ( C  1 - Y)]3  

= 4Z(C2)  + 3Z(C 2 - u) + 3Z(C 2 - v)  + 2Z(C 2 - u - I)), (6b) 

a n d  

[Z(C 1 - x )  + Z ( C  1 - Y)lr 

= 5z(c2) + 3 z ( c 2  - u) + 2 z ( c 2  - v )  + z ( c 2  - u - v )  (6c) 

[Z(C 1 - x - y)]a = 2Z(C2) + Z ( C  1 - v ) ,  (7a) 

[Z(C 1 - x - Y ) ] 3  = Z(C2) + Z ( C 2  - u )  + Z ( C  2 - v )  + Z ( C  2 - u - tO, (7b) 

[ Z ( C  1 - x - y)]a = 2Z(C 2) + Z ( C  2 - u ) .  (7c) 

The subscripts  in the lef t-hand side terms in eqs. (6) and (7) indicate the respect ive  
annelat ion modes .  

We  now ver i fy  that 

[Z(Co)]~ > [Z(Co)]o, (8) 

[Z(Co)]r > [Z(Co)]o. (9) 

Bear ing eq. (5) in mind, for  the proof  of  (8) it is suff ic ient  to demonst ra te  
the s imul taneous  val idi ty o f  

[ Z ( C  2 - x )  + Z ( C  I - Y ) l a  > [ Z ( C 1  - x )  + Z ( C  1 - y)]B (10) 
a n d  

[Z(C 1 - -  X - -  y)]a > [ Z ( C  1 - x - Y)]tl. (11) 

Indeed,  by  compar ing  (6a) with (6b) and (7a) with (7b), we arrive at 

[ Z ( C  1 - x )  + Z ( C  1 - Y ) l a  

= [ Z ( C  1 - X )  + Z ( C  1 - y)]o + Z(C  2) - Z ( C  2 - u )  - Z ( C  2 - u - v )  
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and 

[Z( G - x - Y)la = [ Z ( C l  - x - Y)]/3 + Z(C2) - Z ( C 2  - u )  - Z ( C  2 - u - v ) .  

On the other hand, the fact that the expression Z(C2) - Z ( C 2  - u )  - Z ( C 2  - u - v )  is 
strictly positive is a special case of the inequality (4). This implies (10) and (11), 
and the inequality (8) follows. 

The inequality (9) can be deduced in a fully analogous manner. 
The relations (8) and (9) mean that linear annelation of  a hexagon always 

results in a hexagonal chain having a smaller Hosoya index than the respective 
chain obtained by angular annelation. Evidently, L h  is the unique hexagonal chain 
(/3). Theorem 3 follows. [] 

We mention in passing that [14] 

Z(Zh)  = Vl(tl) h + V2(t2) h + V2(t3) h, 
where 

tl = 3 + (80/3) 1/2 cos &, 

t 2 = 3 + (80/3) 1/2 cos()t, - 2n/3), 

t 3 = 3 + (80/3) 1/2 cos(;I, + 2n/3), 

v I = [148 - 18(/2 + t3) + 2 t 2 t 3 ] / [ ( t  1 - t2)(/1 - t3)], 

v 2 = [148 - 18(t 3 + tl) + 2 t 3 t l ] / [ ( t  2 - t3)(t 2 - tl)], 

V 3 = [148 - 18(t 1 + t2) + 2 t l t 2 ] / [ ( t  3 - t l)(t  3 - rE)] 
and 

,q, = (1/3) arccos [(7803/8000)1/2]. 

4. Proof of theorem 4 

Two vertices in a graph G are said to be independent if they are not adjacent. 
Let V ( G )  be the vertex set of  G. Any subset of  V ( G )  containing no two mutually 
adjacent vertices is called an independent vertex set. The total number of independent 
vertex sets of  G is denoted by o-(G). 

Merrifield and Simmons recently developed a topological approach to structural 
chemistry [15, 16]. The cardinality of  the topological space in their theory turns out 
to be equal to the number of independent vertex sets of  the respective molecular 
graph [15, 16]. Because the same authors also established the basic mathematical 
properties of  the graph invariant ty(G) [16, 17], we find it justified to name this 
quantity the "Merr i f ie ld-Simmons  index". 

The Merr i f ie ld-Simmons  and the Hosoya indices conform to similar, but not 
identical recurrence relations. Thus, in analogy to eq. (1) one has [16] 
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a ( G )  = a ( G  - u )  + a ( G  - Nu),  (12) 

where Nu is the subset o f  the vertex set V ( G ) ,  which contains the vertex u and its 
first neighbors.  The formula analogous to eq. (2) reads 

a ( G l  u G2) = a ( G l ) a ( G 2 ) .  (13) 

Our p roof  o f  theorem 4 fol lows a similar pattern of  reasoning as the p roof  
o f  theorem 3, and will be outlined in an abbreviated form. 

I f  u and v are adjacent  vertices o f  the graph G then, evidently,  a ( G  - N,~) 

< - a ( G -  u - v ) .  From eq. (12), we therefore deduce 

a ( G )  - a ( G  - u) - a ( G  - u - v )  < 0 (14) 

with equali ty only  i f  v is the unique neighbor  o f  u. This relation should be compared 
with (4). 

Using eqs. (12) and (13) and by adopting the same notation as in the previous 
section, we arrive at 

a ( C o )  = 3o'(C1) + 2[o'(C 1 - x) + or(C: - y)] + or(C: - x - y ) ,  

as well  as 

(15) 

[ a ( C  1 - x )  + a ( C  1 - Y ) l a  

= 5a(C2) + 2 a ( C 2  - u )  + 3a(C2 - v )  + a ( C 2  - u - v ) ,  (16a) 

[ a ( C  1 - x )  + a ( C  1 - y)]# 

= 4o'(C 2) + 3o'(C 2 - u) + 3o'(C 2 - v) + 2o'(C 2 - u - 19), (16b) 

[o'(C 1 - x) + o'(C 1 - Y)]r 

= 5o-(C2) + 3 a ( C  2 - u)  + 2o'(C 2 - 19) + a ( C  2 - u - 19) (16c) 

and 

[a (C:  - x - Y)]a = 2a(C2)  + a ( C 2  - v ) ,  (17a) 

[o'(C 1 - x - y)]# = o'(C 2) + o'(C 2 - u) + a ( C  2 - v) + o'(C 2 - u - v), (17b) 

[o ' (C 1 - x - Y)]r = 20"(C2) + o'(C2 - u). (17c) 

There is a complete  analogy between the above formulas and eqs. (5), (6) 
and (7). 
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Bearing in mind eqs. (16) and (17), the proof  of  the inequalities 

[a(Co)]a < [a(Co)] B, (18) 

[a(Co)] r < [a(Co)l B (19) 

is now straightforward. In order to obtain (18), we have first to observe that 

[o ' (C 1 - x )  + cr(C 1 - y ) ] ~  

= [cr(C 1 - x) + o'(C 1 -y ) ]~  + a(C2) - a (C  2 - u) - o ' ( C  2 - u - 1)), 

[cr(C 1 - x - Y)]a = [°'(C1 - x - Y)]/3 + a(C2) - ° ' ( C 2  - u )  - o ' ( C  2 - u - D) 

and to take into account the inequality (14). Then the relation (18 ) fo l lows  
from eq. (15). 

The verification of  (19) is analogous. 
From (18) and (19), theorem 4 follows straightforwardly. [] 

The explicit combinatorial  expression for the Mer r i f i e ld -S immons  index of  
Lh has recently been found [18]. It reads: 

3 
tT(L h) = --~ 2-(h+l)[(R + 5)(7 + R) h + ( R - 5 ) ( 7 - R ) h ] ,  R = ~ [ ~ .  

5.  P r o o f  o f  t h e o r e m  5 

Denote the characteristic polynomial  [13,19] of  a graph G by O(G) = ~(G, x) 
and recall that the largest eigenvalue of  G is just  the largest root of  the equation 
O(G, x) = 0. Therefore, 

¢(G, x) >0 for all x > Xl(G). (20) 

As an immediate  consequence of  (20), we have the following elementary 
statement. 

LEMMA 6 

Let F and H be two graphs and let A(x) = ~0(F, x) - O(H, x). If  for x = xl(H), 
A(x) < 0, then Xl(F) > x1(H). 

Instead of theorem 5, we prove a somewhat stronger result, namely lemma 7. 
Let F and H be graphs of  the following form: 
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F H 

LEMMA 7 

If either O(A - p)  - ¢(A - q) or ~(B - r) - ¢(B - s) (or both), then xl (F) > xl(H). 

Proof  o f  lemma 7 

Let e be an edge of  the graph G, connecting the vertices u and ~. Then the 
characteristic polynomial of  G obeys the following recurrence relations [ 13, 19, 20]: 

~(G) = ~(G - e) - ¢(G - u - v) - 2 ~ ( G  - Z~),  (21) 
J 

where Z~ is a circuit of  G and the summation embraces all circuits containing the 
edge e. Further, 

(~(G)= x ~ ( G - u ) - q ) ( G - u - v ) - ~  O ( G - u - w i C ) - 2  ~ q ) ( G - Z ~ )  (22) 
i j 

with the second summation going over all circuits of  G containing the vertex u. As 
before (cf. eq. (3)), the first summation on the right-hand side of  (22) runs over all 
the vertices w/c which are adjacent to the vertex u, but which differ from v. 

The summation on the right-hand side of  (21) vanishes if the edge e does not 
belong to any circuit: 

O(G) = q~(G - e) - 0(G - u - 19). (23) 

A special case of  eq. (22) of  interest to us is [20] 

O(G) = xO(G - u) - O(G - u - v), (24) 

which holds if  the vertex v is the unique neighbor of  u. 
In what follows, we also need the identity [13, 19,20] 

0(G 1 u G2) = q~(GI)O(G2), (25) 

in which the same notation is used as in eqs. (2) and (13). 
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Apply ing  (21) to the edges  of  F and H, labeled by el,  we  obtain  

O(F) = O(F - el)- ~b(F - p - r) - 2 ~ O ( G  - 2:7) ,  

J 

¢ ( H )  = ¢ ( H  - el) - ~b(H - p - a) - 2 ~ ~O(H - Z y ) .  
J 

It is easy  to see that F and H possess  equal numbers  o f  circuits.  Fur thermore ,  
the circuits o f  F and H, containing the edge el,  can be labeled so that the subgraphs 
F -  Z F and H - Z~ t are isomorphic  and, consequent ly ,  O ( F -  Z F )  - O ( H -  Z ~ )  for 
all values o f  j .  Then 

A(x) = O(F - e 1) - O(F - p - r) - O(H - e 1) + O(H - p - a). (26) 

In all the four  subgraphs which appear  on the r ight-hand side o f  (26), the edge  e2 
does  not be long to any circuit. Therefore ,  a repeated applicat ion o f  (23), (24) and 
(25) yields  

0 ( F  - el) = [x~O(A) - O(A - q)] [x~O(B) - 0(B - s)] - (p( A )q)( B ) ,  

( p ( F  - p - r )  = [xdp(A - p )  - q ) (A  - p - q)] [ x O ( B  - r )  - q ) (B  - r - s)] 

- (~(A - p ) ( p ( B  - r ) ,  

~O(H - el) = [xO(A) - ~0(A - q)] [x~(B) - O(B - r)] 

- ~ ( A ) [ x O ( B  - s )  - q) (B - r - s)] 

d~(H - p - a )  = [ x q ) ( A  - p )  - O ( A  - p - q)]t0(B) - (p (A  - p ) d p ( B  - s ) .  

When  the above  relations are subst i tuted back  into (26) and when ei ther  ~0(A- p )  
- ¢(A - q)  or  O(B - r) - O(B - s), then A(x) is s implif ied to 

A(x) = - [O(A) - x d p ( A  - p )  + dp(A - p - q)] [O(B) - xdp( B - r )  + q ) (B  - r - s)]. (27) 

Because  o f  (22), 

~ ( A )  - x(~(A - p )  + q)(A - p - q )  = - ~ ,  (o(A - p - w A )  - 2 ~.~ ~ ( A  - Z a ) ,  (28)  
i j 

~ ( B ) - x ~ ( B - r ) + ( p ( B - r - s )  = - ~ . ~ ( ? ( B - r - w i B ) - 2 ~ . , ~ ( B - Z T ) .  (29) 
i j 

Now,  according to a we l l -known result o f  graph-spectral  theory  [19, 21],  the largest  
e igenvalue  o f  a connected  graph is (strictly) greater  than the largest  e igenvalue  o f  
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any of its proper subgraphs. This, in tum, implies Xl(H) > Xl(A) > X l ( A - p -  w~/), 
x l (A  - Z~) and Xl(H) > Xl(B) > x l (B  - r -  w~), Xl(B - Z~). Consequently, for all 
vertices w A, w/8 and for all circuits Z A, Z~, the characteristic polynomials of 
the subgraphs A - p - w f  , B - r -  will, a - Z j  , B - Z~ are all positive-valued for 
x = Xl(H). Consequently, for x = Xl(H), the right-hand sides of both (28) and (29) 
are negative-valued. Consequently, for x = Xl(H) the right-hand side of eq. (27) is 
also negative-valued. 

Lemma 7 follows now from lemma 6. [] 

The statement of theorem 5 holds in a trivial manner for h = 1 and h = 2. We 
may therefore assume that h > 3. 

Consider a hexagonal chain C ~ Ch and label its hexagons consecutively by 
Pl, P2 . . . . .  Ph. Thus, the hexagons Pl and Ph are terminal and for i = 1, 2 . . . . .  h - 1, 
the hexagons Pi and Pi+ 1 are adjacent. 

Suppose that C ~ Lb. Then C possesses angularly annelated hexagons. Let Pi 
be the first angularly annelated hexagon of C, i.e. the hexagons Pl, P2 . . . . .  P./- i 
are assumed to be not angularly annelated. Let C* be the hexagonal chain differing 
from C only at the hexagon pj, i.e. the hexagon pj in C* is assumed to be linearly 
annelated. Then C and C* can be viewed as special cases of the graphs F, H from 
lemma 7. Furthermore, the hexagons Pl, P2 . . . . .  Pj-1 induce a linear chain Lj_ 1 
corresponding to the fragment A in lemma 7. Since Lj_ 1 is symmetric, the condition 
¢ ( A - p ) -  t~(A- q) is evidently fulfilled. Then lemma 7 is applicable and 
x~(C) >Xl(C*). Whence, by "linearizing" the hexagon pj, we reduce the largest 
graph eigenvalue. 

Repeating the above transformation to all angularly annelated hexagons of C, 
we ultimately arrive at Lh which therefore has the smallest largest eigenvalue in the 
set Ch. 

The proof of theorem 5 has thus been completed. [] 

The analytical expression for the largest eigenvalue of L h is long known [22]: 

xl(Lh) = ½ {1 + {9 + 8 cOS [n/(h + 1)]}1/2}. 

6. Concluding remarks 

A question which naturally arises from theorems 1-5 is which member(s) 
of the class Ch have maximum values for K, Z and Xl and minimum values for W 
and cr. In the case of the Wiener index, the respective hexagonal chain has been 
identified [11] and shown to be the helicene graph. It is also long known [23-25] 
that all fully-angularly annelated hexagonal chains (with a given h) have equal and 
maximal K-values. 

From the proofs of theorems 3-5 ,  it is evident that the member (or members) 
of Ch having largest Z, smallest o" and largest xl must be fully-angularly annelated. 
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However, whereas the linear annelation is unique (mode/3), there are two distinct 
modes of  angular annelation (a  and 7). As a consequence of this, by means of the 
analysis outlined in the preceding sections, we are not able to completely characterize 
the oppositely-extremal hexagonal chain(s). 

We have recently made extensive numerical studies of the graph invariants 
Z, cr and xl of hexagonal chains [26, 27]. Based upon these findings, we offer the 
following hypotheses which (if true) complement theorems 3, 4 and 5. 

CONJECTURE 3 ° 

The element of the class Ch with the largest Hosoya index is unique and is 
the zig-zag polyphene graph. 

CONJECTURE 4 ° 

The element of the class Cn with the smallest Merrifield-Simmons index is 
unique and is the zig-zag polyphene graph. 

CONJECTURE 5 ° 

The element of the class Ch with the largest largest eigenvalue is unique and 
is the helicene graph. 
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